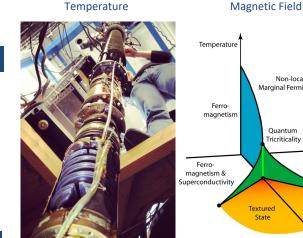

Emergent quantum phenomena

Experimental control variables



Discovery research in quantum materials

Summary

Strongly correlated systems:

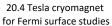
high magnetic field

Charge and spin order, electronic structure determination, unconventional superconductivity (Cu- or Fe-based, heavy fermion, layered materials),

ferroelectrics and multiferroics, topological states of matter

Quantum functional materials:

New superconductors, refrigerants (magnetic, electric, Peltier), battery technology


Instrumentation and techniques:

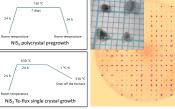
Materials synthesis and crystal growth

High pressure measurements into the mega-bar regime

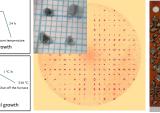
Low temperature, high magnetic field; quantum oscillations

Web www.gm.phy.cam.ac.uk , email mott.hub@phy.cam.ac.uk

High pressure anvil (diamond, SiC, Al,O,) Non-local Marginal Fermi Liquid aasket sample (~0.1 mm) pressure medium: organic liquid, Quantum Ar or He Tricriticality Field NiS₂ 50 kbar, 460 mK 16 Nematic Magnetic field (T) Textured Phase State High pressure Fermi surface Density measurements


Schematic phase diagram of electronic states as a function of temperature, field and pressure

Sample handling on the microscale


Pressure

Crystal growth and characterisation

Flux growth

Mirror furnace