Unconventional metallic osmates

Andrew Boothroyd

University of Oxford

- Non-centrosymmetric metals: so what’s new?
 1. LiOsO$_3$: Ferroelectric-like structural phase transition driven by entropy

 2. Pb$_2$CoOsO$_6$: Multiferroic-like structural phase transition driven by magnetic frustration
Collaborators

Oxford group
 Yanfeng Guo (now at ShanghaiTech)
 Andrew Princep
 Marein Rahn

NIMS (Japan)
 Hai Feng (now at MPI-CPS Dresden)
 Xia Wang
 Yahua Yuan
 Yoshitaka Matsushita
 Masahiro Nagao
 Shan Yu
 Akira Sato
 Masao Arai
 Yuichi Michiue
 Prof Kazunari Yamaura

Tohoku (Japan)
 Kenji Tsuda

Gakushuin (Japan)
 Yuichi Shirako
 Masaki Akaogi

ISIS Facility
 Dmitry Khalyavin
 Pascal Manuel

FRM-II, Munich
 Anatoliy Shenshyn

Institute of Physics, Beijing
 Youguo Shi
 Hongming Weng
Collaborators

High pressure synthesis & bulk measurements

Yanfeng Guo (Oxford, now at ShanghaiTech)
Youguo Shi (IoP, Beijing)
Hai Luke Feng (NIMS and MPI-CPS Dresden)
Yahua Yuan (NIMS, Japan)
Xia Wang (NIMS, Japan)
Shan Yu (NIMS, Japan)
Masahiro Nagao (NIMS, Japan)
Prof Kazunari Yamaura (NIMS, Japan)

Neutron powder diffraction

Andrew Princep (Oxford)
Dmitry Khalyavin (ISIS Facility)
Pascal Manuel (ISIS Facility)
Anatoliy Shenshyn (FRM-II, Munich)

X-ray diffraction

Yoshitaka Matsushita (NIMS, Japan)
Yuichi Michiuie (NIMS, Japan)
Akira Sato (NIMS, Japan)
Marein Rahn (Oxford)

Convergent beam electron diffraction

Kenji Tsuda (Tohoku Univ, Japan)

High pressure studies of crystal stability

Yuichi Shirako (Gakushuin Univ, Japan)
Masaki Akaogi (Gakushuin Univ, Japan)

First-principles electronic structure calculations

Masao Arai (NIMS, Japan)
Hongming Weng (IoP, Beijing)
Non-centrosymmetric metals

- Metals which lack spatial inversion symmetry: \(H(\mathbf{r}) \neq H(-\mathbf{r}) \)

- Non-centrosymmetric superconductors:
 - e.g. CePt\(_3\)Si, Li\(_2\)Pd\(_3\)B, NbReSi, LaNiC\(_2\), etc

States do not have well-defined parity;

can have mixed spin-singlet and spin-triplet superconducting pairing
Non-centrosymmetric metals

- Bands split by Dresselhaus–Rashba antisymmetric spin-orbit coupling:

\[H_{SO} = \alpha (\nabla V \times \mathbf{k}) \cdot \mathbf{s} \]

Spin changes direction around the Fermi surface

- Physical consequences:
 - optical activity
 - anisotropic thermopower
 - skyrmions
 - Weyl semi-metals

~ 30 non-centrosymmetric metals, of which only 3 are oxides

Osmium oxide compounds

- Chemically highly versatile
- Stable oxides: OsO$_2$, OsO$_4$
- Examples:
 - KOs$_2$O$_6$ (Os$^{5.5+}$, 5$d^{2.5}$) Superconductor ($T_c = 9.5$ K)
 - Ba$_2$NaOsO$_6$ (Os$^{7+}$, 5d^1) FM insulator with moment $\sim 0.2 \mu_B$
 - Cd$_2$Os$_2$O$_7$, NaOsO$_3$ (Os$^{5+}$, 5d^3) Slater-type (?) metal-insulator transitions
1. LiOsO$_3$

Phase transition at 140 K

LiOsO$_3$

Powder neutron diffraction on WISH, ISIS

- Continuous phase transition
- Strain is secondary order parameter → primary order parameter is symmetry-breaking
- Primary structural instability is a shift in the Li ions by 0.5 Å along c
- Loss of centre of symmetry and formation of ‘polar’ axis below T_s (R-3c → R3c)
- No evidence for magnetic order
Convergent-beam electron diffraction observed and simulated for R-3c and R3c structures.
Calculated electronic structure

DFT-GGA (WIEN2K)
• First-order structural transitions can involve only strain

• Second-order structural transitions usually involve a change in internal symmetry other than mere strain

\[F = F_0 + \frac{1}{2} aP^2 + \frac{1}{4} bP^4 + \frac{1}{2} \lambda \epsilon P^2 + \frac{1}{2} C_{el}\epsilon^2 \ldots \]

• To be classed as a "ferroelectric metal", the phase transition must:
 (i) be continuous
 (ii) involve loss of inversion symmetry
 (iii) be accompanied by appearance of a polar axis

• Previous candidate "ferroelectric metals" (subsequently dismissed):
 \((V_3Si, Nb_3Sn)\quad Cd_2Re_2O_7\quad BaTiO_{3-\delta}\)
Ferroelectricity in LiNbO$_3$, LiTaO$_3$ (and LiOsO$_3$)

LiNbO$_3$: $T_s = 1480$ K
LiTaO$_3$: $T_s = 940$ K
LiOsO$_3$: $T_s = 140$ K

$T > T_s$ (R-3c) $T < T_s$ (R3c)

Abrahams et al., JPCS 34, 521 (1973)
LiOsO$_3$ Summary

- Order–disorder transition drives structural transition
- “Ferroelectric metal” à la Anderson & Blount
- Possible because polar displacements of Li almost entirely decoupled from conduction states on Os & O
2. \(\text{Pb}_2\text{CoOsO}_6 \)
Monoclinic crystal system

\[a = 5.64, \quad b = 5.58, \quad c = 7.82 \text{ Å}, \quad \beta = 89.8^\circ \]

centrosymmetric space group \(P2_1/n \)

Double perovskite: \(A_2B B'O_6 \)
Spin-polarised bands from DFT in GGA

c.f. localized states:

Co\(^{2+}\) (3\(d^7\))
Os\(^{6+}\) (5\(d^2\))

\(t_{2g}\)
\(e_g\)

\(e_g\)
\(t_{2g}\)
• Single magnetic transition
 simultaneous order of Co & Os

• Magnetic structure is frustrated
 (no inversion symmetry)

• Magnetic order is coupled to lattice
 removes crystal centre of symmetry
 \(P2_1/n \rightarrow Pn \)

- Propagation vector \(\mathbf{k} = (\frac{1}{2}, 0, \frac{1}{2}) \)
Pb$_2$CoOsO$_6$ Summary

- Magnetic frustration drives structural transition to non-centrosymmetric structure
- Analogous to a type-II multiferroic transition
- Both Os and Co states contribute to Fermi level